An Interval Version of the Crank-Nicolson Method - The First Approach
نویسنده
چکیده
To study the heat or diffusion equation it is often used the Crank-Nicolson method which is unconditionally stable and has order of convergence O(k + h ), where k and h are mesh con2 2 stants. Unfortunately, using this method in conventional floatingpoint arithmetic we get solutions including not only the method error, but also representation and rounding error, Therefore, we propose an interval version of Crank-Nicolson method from which we would like to obtain solutions including the method error. Applying such a method in interval floating-point arithmetic one can get solutions including all possible numerical errors. A numerical example is presented.
منابع مشابه
Numerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact solution
The Burgers’ equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank – Nicholson, used for solving the one-dimensional Burgers’ equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to...
متن کاملComparison of The LBM With the Modified Local Crank-Nicolson Method Solution of Transient Two-Dimensional Non-Linear Burgers Equation
Burgers equation is a simplified form of the Navier-Stokes equation that represents the non-linear features of it. In this paper, the transient two-dimensional non-linear Burgers equation is solved using the Lattice Boltzmann Method (LBM). The results are compared with the Modified Local Crank-Nicolson method (MLCN) and exact solutions. The LBM has been emerged as a new numerical method for sol...
متن کاملA Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method
In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...
متن کاملA numerical investigation of a reaction-diffusion equation arises from an ecological phenomenon
This paper deals with the numerical solution of a class of reaction diffusion equations arises from ecological phenomena. When two species are introduced into unoccupied habitat, they can spread across the environment as two travelling waves with the wave of the faster reproducer moving ahead of the slower.The mathematical modelling of invasions of species in more complex settings that include ...
متن کاملMathematical Modeling of Micropolar Blood Flow in a Stenosed Artery Under the Body Acceleration and Magnetic Field
Blood flow is modeled as non-Newtonian micropolar fluid. The non-linear governing equations of continuum and momentum in the cylindrical coordinate are being discretized using a finite difference approach and have been solved iteratively ,through Crank-Nicolson method. The blood velocity distribution, volumetric flow rate and Resistance to blood flow at the stenosis throat are computed for vari...
متن کامل